Modules which are invariant under nilpotents of their envelopes and covers

Author:

Quynh Truong Cong1,Abyzov Adel2,Tai Dinh Duc3

Affiliation:

1. Department of Mathematics, The University of Danang, University of Science and Education, 459 Ton Duc Thang, Danang City, Vietnam

2. Department of Algebra and Mathematical Logic, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan, 420008 Russia

3. Faculty of Mathematics, Vinh University, 182 Le Duan Street, Vinh City, Nghe An Province, Vietnam

Abstract

A module is called nilpotent-invariant if it is invariant under any nilpotent endomorphism of its injective envelope [M. T. Koşan and T. C. Quynh, Nilpotent-invaraint modules and rings, Comm. Algebra 45 (2017) 2775–2782]. In this paper, we continue the study of nilpotent-invariant modules and analyze their relationship to (quasi-)injective modules. It is proved that a right module [Formula: see text] over a semiprimary ring is nilpotent-invariant iff all nilpotent endomorphisms of submodules of [Formula: see text] extend to nilpotent endomorphisms of [Formula: see text]. It is also shown that a right module [Formula: see text] over a prime right Goldie ring with dim[Formula: see text] is nilpotent-invariant iff it is injective. We also study nilpotent-coinvariant modules that are the dual notation of nilpotent-invariant modules. It is proved that if [Formula: see text] is a finitely generated nilpotent-coinvariant right module with [Formula: see text] square-full, then [Formula: see text] is quasi-projective. Some characterizations and structures of nilpotent-coinvariant modules are considered.

Funder

Scientific and Educational Mathematical Center of the Volga Federal District

Science and Technology Development of the Ministry of Education and Training

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3