Affiliation:
1. Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA
Abstract
It is shown that if a bilinear map f : A × B → C of modules over a commutative ring k is nondegenerate (i.e. if no nonzero element of A annihilates all of B, and vice versa), and A and B are Artinian, then A and B are of finite length. Some consequences are noted. Counterexamples are given to some attempts to generalize the above result to balanced bilinear maps of bimodules over noncommutative rings, while the question is raised whether other such generalizations are true.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献