Erdős–Ko–Rado theorem for vector spaces over residue class rings

Author:

Guo Jun1

Affiliation:

1. Department of Mathematics, Langfang Normal University, Langfang 065000, P. R. China

Abstract

Let [Formula: see text] be its decomposition into a product of powers of distinct primes, and [Formula: see text] be the residue class ring modulo [Formula: see text]. Let [Formula: see text] be the [Formula: see text]-dimensional row vector space over [Formula: see text]. A generalized Grassmann graph over [Formula: see text], denoted by [Formula: see text] ([Formula: see text] for short), has all [Formula: see text]-subspaces of [Formula: see text] as its vertices, and two distinct vertices are adjacent if their intersection is of dimension [Formula: see text], where [Formula: see text]. In this paper, we determine the clique number and geometric structures of maximum cliques of [Formula: see text]. As a result, we obtain the Erdős–Ko–Rado theorem for [Formula: see text].

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3