Affiliation:
1. Department of Mathematics, Chamran University, Ahvaz, Iran
2. Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, USA
Abstract
It is shown that RgMax (R) is infinite for certain commutative rings, where RgMax (R) denotes the set of all maximal subrings of a ring R. It is observed that whenever R is a ring and D is a UFD subring of R, then | RgMax (R)| ≥ | Irr (D) ∩ U(R)|, where Irr (D) is the set of all non-associate irreducible elements of D and U(R) is the set of all units of R. It is shown that every ring R is either Hilbert or | RgMax (R)| ≥ ℵ0. It is proved that if R is a zero-dimensional (or semilocal) ring with | RgMax (R)| < ℵ0, then R has nonzero characteristic, say n, and R is integral over ℤn. In particular, it is shown that if R is an uncountable artinian ring, then | RgMax (R)| ≥ |R|. It is observed that if R is a noetherian ring with |R| > 2ℵ0, then | RgMax (R)| ≥ 2ℵ0. We determine exactly when a direct product of rings has only finitely many maximal subrings. In particular, it is proved that if a semisimple ring R has only finitely many maximal subrings, then every descending chain ⋯ ⊂ R2 ⊂ R1 ⊂ R0 = R where each Ri is a maximal subring of Ri-1, i ≥ 1, is finite and the last terms of all these chains (possibly with different lengths) are isomorphic to a fixed ring, say S, which is unique (up to isomorphism) with respect to the property that R is finitely generated as an S-module.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献