Weakly principally quasi-Baer rings

Author:

Majidinya A.1,Moussavi A.1

Affiliation:

1. Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box 14115-134, Tehran, Iran

Abstract

We say a ring R with unity is weakly principally quasi-Baer or simply (weakly p.q.-Baer) if the right annihilator of a principal right ideal is right s-unital by right semicentral idempotents, which implies that R modulo the right annihilator of any principal right ideal is flat. It is proven that the weakly p.q.-Baer property is inherited by polynomial extensions and includes both left p.q.-Baer rings and right p.q.-Baer rings and is closed under direct products and Morita invariance. A ring R is weakly p.q.-Baer if and only if the upper triangular matrix ring Tn(R) is weakly p.q.-Baer. We extend a theorem of Kist for commutative Baer rings to weakly p.q.-Baer rings for which every prime ideal contains a unique minimal prime ideal without using topological arguments. It is also shown that there is an important subclass of weakly p.q.-Baer rings which have a nontrivial subdirect product representation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special Properties of Morita Contexts;Algebra Colloquium;2024-05-29

2. Weakly p.q.-Baer skew Hurwitz series rings;Asian-European Journal of Mathematics;2023-12-08

3. Weakly principally quasi-Baer skew generalized power series rings;Applicable Algebra in Engineering, Communication and Computing;2021-03-18

4. Skew inverse Laurent series extensions of weakly principally quasi Baer rings;Journal of Algebra and Its Applications;2020-08-18

5. Differential Extensions of Weakly Principally Quasi-Baer Rings;Acta Mathematica Vietnamica;2018-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3