Some two-weight codes invariant under the 3-fold covers of the Mathieu groups M22 and Aut(M22)
-
Published:2023-10-28
Issue:
Volume:
Page:
-
ISSN:0219-4988
-
Container-title:Journal of Algebra and Its Applications
-
language:en
-
Short-container-title:J. Algebra Appl.
Affiliation:
1. Department of Mathematics and Applied Mathematics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
Abstract
Using an approach from finite group representation theory we construct quaternary non-projective codes with parameters [Formula: see text], quaternary projective codes with parameters [Formula: see text] and [Formula: see text] and binary projective codes with parameters [Formula: see text] as examples of two-weight codes on which a finite almost quasisimple group of sporadic type acts transitively as permutation groups of automorphisms. In particular, we show that these codes are invariant under the [Formula: see text]-fold covers [Formula: see text] and [Formula: see text], respectively, of the Mathieu groups [Formula: see text] and [Formula: see text]. Employing a known construction of strongly regular graphs from projective two-weight codes we obtain from the binary projective (respectively, quaternary projective) two-weight codes with parameters those given above, the strongly regular graphs with parameters [Formula: see text] and [Formula: see text] respectively. The latter graph can be viewed as a [Formula: see text]-[Formula: see text]-symmetric design with the symmetric difference property whose residual and derived designs with respect to a block give rise to binary self-complementary codes meeting the Grey–Rankin bound with equality.
Funder
National Research Foundation of South Africa
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Algebra and Number Theory