DG structure on the length 4 big from small construction

Author:

VandeBogert Keller1

Affiliation:

1. University of South Carolina, USA

Abstract

The big from small construction was introduced by Kustin and Miller in [A. Kustin and M. Miller, Constructing big Gorenstein ideals from small ones, J. Algebra 85 (1983) 303–322] and can be used to construct resolutions of tightly double linked Gorenstein ideals. In this paper, we expand on the DG-algebra techniques introduced in [A. Kustin, Use DG methods to build a matrix factorization, preprint (2019), arXiv:1905.11435 ] and construct a DG [Formula: see text]-algebra structure on the length [Formula: see text] big from small construction. The techniques employed involve the construction of a morphism from a Tate-like complex to an acyclic DG [Formula: see text]-algebra exhibiting Poincaré duality. This induces homomorphisms which, after suitable modifications, satisfy a list of identities that end up perfectly encapsulating the required associativity and DG axioms of the desired product structure for the big from small construction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3