Direct Complements Almost Unique

Author:

Ibrahim Yasser12,Yousif Mohamed3

Affiliation:

1. Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt

2. Department of Mathematics, Faculty of Science, Taibah University, Madina, Saudi Arabia

3. Department of Mathematics, The Ohio State University, Lima, Ohio 45804, USA

Abstract

Direct complements in a right [Formula: see text]-module [Formula: see text] are said to be almost unique if, whenever [Formula: see text], then [Formula: see text] (also [Formula: see text], by symmetry). We will show that this new class of modules lies strictly between the dual-square-free and the summand-dual-square-free modules. While it is an open question whether right quasi-duo (equivalently, right dual-square-free) rings are left-right symmetric, we will prove that both notions “summand-dual-square-free” and “direct complements almost unique” are left-right symmetric. Furthermore, we will show that direct complements in a module [Formula: see text] are almost unique iff idempotents in [Formula: see text] are central modulo [Formula: see text], where [Formula: see text]. As an immediate consequence, if [Formula: see text] is an epi-projective module, then direct complements in [Formula: see text] are almost unique iff [Formula: see text] is strongly perspective (i.e. if [Formula: see text] and [Formula: see text] are isomorphic direct summands of [Formula: see text] and [Formula: see text], then [Formula: see text]. In particular, direct complements in a ring [Formula: see text] are almost unique iff [Formula: see text] is strongly perspective. Moreover, if [Formula: see text] is a module with the finite exchange whose direct complements are almost unique, then [Formula: see text] is clean, strongly perspective, and satisfy the full exchange.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. C4-modules with the exchange property;Communications in Algebra;2022-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3