Affiliation:
1. Department of Mathematics and Statistics, University of Regina, Regina, Canada, S4S 0A2, Canada
Abstract
A reality-based algebra (RBA) is a finite-dimensional associative algebra with involution over [Formula: see text] whose distinguished basis [Formula: see text] contains [Formula: see text] and is closed under pseudo-inverse. An integral RBA is one whose structure constants in its distinguished basis are integers. If the algebra has a one-dimensional representation taking positive values on [Formula: see text], then we say that the RBA has a positive degree map. These RBAs have a standard feasible trace, and the multiplicities of the irreducible characters in the standard feasible trace are the multiplicities of the RBA. In this paper, we show that for integral RBAs with positive degree map whose multiplicities are rational, any finite subgroup of torsion units whose elements are all of degree [Formula: see text] and have algebraic integer coefficients must have order dividing a certain positive integer determined by the degree map and the multiplicities. The paper concludes with a thorough investigation of the properties of RBAs that force multiplicities to be rational.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献