Digital representation systems for canonical structures in the plane

Author:

Kossentini Sayed1

Affiliation:

1. Department of Mathematics, Faculté, des Sciences de Tunis, Université de Tunis, El Manar 2092, Tunis, Tunisia

Abstract

The two-dimensional systems given by complex numbers [Formula: see text] [Formula: see text], dual numbers [Formula: see text] [Formula: see text] and hyperbolic numbers [Formula: see text] [Formula: see text] are, up to algebra isomorphism, the three possible associative algebra structures on [Formula: see text]. The goal of this work is to investigate canonical numbers systems for the rings of integers in the two-dimensional systems yielding digital representation systems in the plane. Kátai and Szabó [Canonical number systems for complex integers, Acta Sci. Math. 37 (1975) 255–260] proved that all complex numbers can be written in radix expansion with the natural numbers [Formula: see text] as digits. In this paper, we will characterize all canonical number systems for the rings of integers in dual and hyperbolic numbers. Finally, using the associate matrices of the two-dimensional bases, we prove that all points in the plane [Formula: see text] can be written in digital representation systems with a large class of bases, including binary, octal, decimal and hexadecimal ones. In particular, we prove that a digital representation system in the plane is finite or periodic if and only if it represents a point with rational coordinates.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3