Rings of Morita contexts which are maximal orders

Author:

Saraç Bülent1,Akalan Evrim1,Aydoğdu Pınar1,Marubayashi Hidetoshi2

Affiliation:

1. Department of Mathematics, Hacettepe University, Beytepe Campus, 06800 Ankara, Turkey

2. Faculty of Sciences and Engineering, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan

Abstract

Let [Formula: see text] be a ring of Morita context which is a prime Goldie ring with its quotient ring [Formula: see text]. We define the notion of an [Formula: see text]-maximal module in [Formula: see text] and that of an [Formula: see text]-maximal module in [Formula: see text] from order theoretical point of view and give some necessary and sufficient conditions for [Formula: see text] to be a maximal order in terms of [Formula: see text]-module [Formula: see text] and [Formula: see text]-module [Formula: see text]. In case [Formula: see text] is a maximal order, we explicitly describe the structure of [Formula: see text]-[Formula: see text]-ideals. These results are applied to obtain necessary and sufficient conditions for [Formula: see text] to be an Asano order or a Dedekind order.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Reference12 articles.

1. On generalized Dedekind prime rings

2. Ore Extensions Over PI G-Dedekind Prime Rings

3. Dedekind Modules

4. Research Notes in Mathematics;Chatters A. W.,1980

5. Queen’s Papers in Pure and Applied Mathematics;Gilmer R.,1992

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rings of Morita contexts which are Dubrovin valuation rings;Journal of Algebra and Its Applications;2022-07-21

2. On the restricted graded Jacobson radical of rings of Morita context;Turkish Journal of Mathematics;2022-01-01

3. On the restricted graded Jacobson radical of rings of Morita Context;TURKISH JOURNAL OF MATHEMATICS;2021

4. A Characterization of G-Dedekind Prime Morita Contexts;Vietnam Journal of Mathematics;2019-03-08

5. Idealizers in Differential Polynomial Rings and Generalized HNP Rings;Advances in Rings and Modules;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3