Topological actions of Temperley–Lieb monoids and representation stability

Author:

Sitaraman Maithreya1

Affiliation:

1. Equity Derivatives Quants, Nomura Securities International Inc., Worldwide Plaza 309 West 49th Street, New York, NY 10019-7316, USA

Abstract

In this paper, we consider the Temperley–Lieb algebras [Formula: see text] at [Formula: see text]. Since [Formula: see text], we can consider the multiplicative monoid structure and ask how this monoid acts on topological spaces. Given a monoid action on a topological space, we get an algebra action on each homology group. The main theorem of this paper explicitly deduces the representation structure of the homology groups in terms of a natural filtration associated with our [Formula: see text]-space. As a corollary of this result, we are able to study stability phenomena. There is a natural way to define representation stability in the context of [Formula: see text], and the presence of filtrations enables us to define a notion of topological stability. We are able to deduce that a filtration-stable sequence of [Formula: see text]-spaces results in representation-stable sequence of homology groups. This can be thought of as the analogue of the statement that the homology of configuration spaces forms a finitely generated FI-module.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3