Lifting modules with finite internal exchange property and direct sums of hollow modules

Author:

Kuratomi Yosuke1ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan

Abstract

A module [Formula: see text] is said to be lifting if, for any submodule [Formula: see text] of [Formula: see text], there exists a decomposition [Formula: see text] such that [Formula: see text] and [Formula: see text] is a small submodule of [Formula: see text]. A lifting module is defined as a dual concept of the extending module. A module [Formula: see text] is said to have the finite internal exchange property if, for any direct summand [Formula: see text] of [Formula: see text] and any finite direct sum decomposition [Formula: see text], there exists a direct summand [Formula: see text] of [Formula: see text] [Formula: see text] such that [Formula: see text]. This paper is concerned with the following two fundamental unsolved problems of lifting modules: “Classify those rings all of whose lifting modules have the finite internal exchange property” and “When is a direct sum of indecomposable lifting modules lifting?”. In this paper, we prove that any [Formula: see text]-square-free lifting module over a right perfect ring satisfies the finite internal exchange property. In addition, we give some necessary and sufficient conditions for a direct sum of hollow modules over a right perfect ring to be lifting with the finite internal exchange property.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3