Skew cyclic codes over 𝔽4R

Author:

Benbelkacem Nasreddine1,Ezerman Martianus Frederic2,Abualrub Taher3,Aydin Nuh4,Batoul Aicha1

Affiliation:

1. Faculty of Mathematics, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab Ezzouar, 16111 Algiers, Algeria

2. School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link 637371, Singapore

3. Department of Mathematics and Statistics, College of Arts and Sciences, American University of Sharjah, P. O. Box 26666 Sharjah, United Arab Emirates

4. Department of Mathematics and Statistics, Kenyon College, Gambier, Ohio OH 43022, USA

Abstract

This paper considers a new alphabet set, which is a ring that we call [Formula: see text], to construct linear error-control codes. Skew cyclic codes over this ring are then investigated in details. We define a nondegenerate inner product and provide a criteria to test for self-orthogonality. Results on the algebraic structures lead us to characterize [Formula: see text]-skew cyclic codes. Interesting connections between the image of such codes under the Gray map to linear cyclic and skew-cyclic codes over [Formula: see text] are shown. These allow us to learn about the relative dimension and distance profile of the resulting codes. Our setup provides a natural connection to DNA codes where additional biomolecular constraints must be incorporated into the design. We present a characterization of [Formula: see text]-skew cyclic codes which are reversible complement.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. F_p R – Linear Skew Constacyclic Codes;Afyon Kocatepe University Journal of Sciences and Engineering;2024-06-08

2. Skew cyclic codes over F4R and their applications to DNA codes construction;AN STI U OVID CO-MAT;2024

3. Structure of $${\mathbb {F}}_q{\mathcal {R}}$$-linear $$(\varTheta ,\varDelta _\varTheta )$$-cyclic codes;Computational and Applied Mathematics;2024-04

4. Skew cyclic codes over Z4;COMMUN COMB OPTIM;2024

5. Array-designed reversible and complementary codes over GF(4);Applicable Algebra in Engineering, Communication and Computing;2023-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3