Affiliation:
1. Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O.Box 14115-134, Tehran, Iran
Abstract
Analogous to left p.q.-Baer property of a ring [G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra29 (2001) 639–660], we say a right R-module M is endo-principallyquasi-Baer (or simply, endo-p.q.-Baer) if for every m ∈ M, lS(Sm) = Se for some e2 = e ∈ S = End R(M). It is shown that every direct summand of an endo-p.q.-Baer module inherits the property that any projective (free) module over a left p.q.-Baer ring is an endo-p.q.-Baer module. In particular, the endomorphism ring of every infinitely generated free right R-module is a left (or right) p.q.-Baer ring if and only if R is quasi-Baer. Furthermore, every principally right ℱℐ-extending right ℱℐ-𝒦-nonsingular ring is left p.q.-Baer and every left p.q.-Baer right ℱℐ-𝒦-cononsingular ring is principally right ℱℐ-extending.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献