Affiliation:
1. Department of Algebra, Charles University, Sokolovska 83, Praha 8, 186 75, Czech Republic
Abstract
We study the multiplicities of Young modules as direct summands of permutation modules on cosets of Young subgroups. Such multiplicities have become known as the p-Kostka numbers. We classify the indecomposable Young permutation modules, and, applying the Brauer construction for p-permutation modules, we give some new reductions for p-Kostka numbers. In particular, we prove that p-Kostka numbers are preserved under multiplying partitions by p, and strengthen a known reduction corresponding to adding multiples of a p-power to the first row of a partition.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献