Down closed injectivity and essentialness

Author:

Shahbaz Leila1,Mahmoudi Mojgan2

Affiliation:

1. Department of Mathematics, University of Maragheh, Maragheh 55181-83111, Iran

2. Department of Mathematics, Shahid Beheshti University, G.C., Tehran 19839, Iran

Abstract

Injectivity is one of the useful notions in algebra, as well as in many other branches of mathematics, and the study of injectivity with respect to different classes of monomorphisms is crucial in many categories. Also, essentiality is an important notion closely related to injectivity. Down closed monomorphisms and injectivity with respect to these monomorphisms, so-called dc-injectivity, were first introduced and studied by the authors for [Formula: see text]-posets, posets with an action of a pomonoid [Formula: see text] on them. They gave a criterion for dc-injectivity and studied such injectivity for [Formula: see text] itself, and for its poideals. In this paper, we give results about dc-injectivity of [Formula: see text]-posets, also we find some homological characterization of pomonoids and pogroups by dc-injectivity. In particular, we give a characterization of pomonoids over which dc-injectivity is equivalent to having a zero top element. Also, introducing the notion of [Formula: see text]-injectivity for [Formula: see text]-posets, where [Formula: see text] and [Formula: see text] is externally adjoined to the posemigroup [Formula: see text], we find some classes of pomonoids such that for [Formula: see text]-posets over them the Baer Criterion holds. Further, several kinds of essentiality of down closed monomorphisms of [Formula: see text]-posets, and their relations with each other and with dc-injectivity is studied. It is proved that although these essential extensions are not necessarily equivalent, they behave almost equivalently with respect to dc-injectivity. Finally, we give an explicit description of dc-injective hulls of [Formula: see text]-posets for some classes of pomonoids [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3