A note on Dedekind Criterion

Author:

Jakhar Anuj1,Khanduja Sudesh K.23

Affiliation:

1. The Institute of Mathematical Sciences, HBNI, CIT Campus, Taramani, Chennai 600113, Tamil Nadu, India

2. Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, SAS Nagar, Punjab 140306, India

3. Department of Mathematics, Panjab University, Chandigarh 160014, India

Abstract

Let [Formula: see text] be an algebraic number field with [Formula: see text] an algebraic integer having minimal polynomial [Formula: see text] over the field [Formula: see text] of rational numbers and [Formula: see text] be the ring of algebraic integers of [Formula: see text]. For a fixed prime number [Formula: see text], let [Formula: see text] be the factorization of [Formula: see text] modulo [Formula: see text] as a product of powers of distinct irreducible polynomials over [Formula: see text] with [Formula: see text] monic. In 1878, Dedekind proved a significant result known as Dedekind Criterion which says that the prime number [Formula: see text] does not divide the index [Formula: see text] if and only if [Formula: see text] is coprime with [Formula: see text] where [Formula: see text]. This criterion has been widely used and generalized. In this paper, a simple proof of Generalized Dedekind Criterion [S. K. Khanduja and M. Kumar, On Dedekind criterion and simple extensions of valuation rings, Comm. Algebra 38 (2010) 684–696] using elementary valuation theory is given.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3