Affiliation:
1. Department of Mathematics, Linköping University, Sweden
2. Department of Mathematics and Statistics, University of Zambia, Zambia
Abstract
Let [Formula: see text] be a principal ideal domain (PID) or more generally a Dedekind domain and let [Formula: see text] be a coherent functor from the category of finitely generated [Formula: see text]-modules to itself. We classify the half-exact coherent functors [Formula: see text]. In particular, we show that if [Formula: see text] is a half-exact coherent functor over a Dedekind domain [Formula: see text], then [Formula: see text] is a direct sum of functors of the form [Formula: see text], [Formula: see text] and [Formula: see text], where [Formula: see text] is a finitely generated projective [Formula: see text]-module, [Formula: see text] a nonzero prime ideal in [Formula: see text] and [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory