Graver bases of shifted numerical semigroups with 3 generators

Author:

Howard James1ORCID,O’Neill Christopher2ORCID

Affiliation:

1. Mathematics Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA

2. Mathematics Department, San Diego State University, San Diego, CA 92182, USA

Abstract

A numerical semigroup [Formula: see text] is a subset of the non-negative integers that is closed under addition. A factorization of [Formula: see text] is an expression of [Formula: see text] as a sum of generators of [Formula: see text], and the Graver basis of [Formula: see text] is a collection [Formula: see text] of trades between the generators of [Formula: see text] that allows for efficient movement between factorizations. Given positive integers [Formula: see text], consider the family [Formula: see text] of “shifted” numerical semigroups whose generators are obtained by translating [Formula: see text] by an integer parameter [Formula: see text]. In this paper, we characterize the Graver basis [Formula: see text] of [Formula: see text] for sufficiently large [Formula: see text] in the case [Formula: see text], in the form of a recursive construction of [Formula: see text] from that of smaller values of [Formula: see text]. As a consequence of our result, the number of trades in [Formula: see text], when viewed as a function of [Formula: see text], is eventually quasilinear. We also obtain a sharp lower bound on the start of quasilinear behavior.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3