On S-GCD domains

Author:

Anderson D. D.1,Hamed Ahmed2,Zafrullah Muhammad3

Affiliation:

1. Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USA

2. Department of Mathematics, Faculty of Sciences, Monastir, Tunisia

3. Department of Mathematics, Idaho State University, Pocatello, ID 83209-8085, USA

Abstract

Let [Formula: see text] be a multiplicative set in an integral domain [Formula: see text]. A nonzero ideal [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-[Formula: see text]-principal if there exist an [Formula: see text] and [Formula: see text] such that [Formula: see text]. Call [Formula: see text] an [Formula: see text]-GCD domain if each finitely generated nonzero ideal of [Formula: see text] is [Formula: see text]-[Formula: see text]-principal. This notion was introduced in [A. Hamed and S. Hizem, On the class group and [Formula: see text]-class group of formal power series rings, J. Pure Appl. Algebra 221 (2017) 2869–2879]. One aim of this paper is to characterize [Formula: see text]-GCD domains, giving several equivalent conditions and showing that if [Formula: see text] is an [Formula: see text]-GCD domain then [Formula: see text] is a GCD domain but not conversely. Also we prove that if [Formula: see text] is an [Formula: see text]-GCD [Formula: see text]-Noetherian domain such that every prime [Formula: see text]-ideal disjoint from [Formula: see text] is a [Formula: see text]-ideal, then [Formula: see text] is [Formula: see text]-factorial and we give an example of an [Formula: see text]-GCD [Formula: see text]-Noetherian domain which is not [Formula: see text]-factorial. We also consider polynomial and power series extensions of [Formula: see text]-GCD domains. We call [Formula: see text] a sublocally [Formula: see text]-GCD domain if [Formula: see text] is a [Formula: see text]-GCD domain for every non-unit [Formula: see text] and show, among other things, that a non-quasilocal sublocally [Formula: see text]-GCD domain is a generalized GCD domain (i.e. for all [Formula: see text] is invertible).

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. S-injective modules;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-11-02

2. CHARACTERIZING S-PROJECTIVE MODULES AND S-SEMISIMPLE RINGS BY UNIFORMITY;Journal of Commutative Algebra;2023-03-01

3. On the S-class group of the monoid algebra $$D[\Gamma ]$$;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-01-23

4. A new characterization of GCD domains of formal power series;St. Petersburg Mathematical Journal;2022-08-24

5. Generalization of Artinian rings and the formal power series rings;Rendiconti del Circolo Matematico di Palermo Series 2;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3