Cardinality of product sets in torsion-free groups and applications in group algebras

Author:

Abdollahi Alireza12,Jafari Fatemeh1

Affiliation:

1. Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran

2. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran

Abstract

Let [Formula: see text] be a unique product group, i.e. for any two finite subsets [Formula: see text] of [Formula: see text], there exists [Formula: see text] which can be uniquely expressed as a product of an element of [Formula: see text] and an element of [Formula: see text]. We prove that if [Formula: see text] is a finite subset of [Formula: see text] containing the identity element such that [Formula: see text] is not abelian, then, for all subsets [Formula: see text] of [Formula: see text] with [Formula: see text], [Formula: see text]. Also, we prove that if [Formula: see text] is a finite subset containing the identity element of a torsion-free group [Formula: see text] such that [Formula: see text] and [Formula: see text] is not abelian, then for all subsets [Formula: see text] of [Formula: see text] with [Formula: see text], [Formula: see text]. Moreover, if [Formula: see text] is not isomorphic to the Klein bottle group, i.e. the group with the presentation [Formula: see text], then for all subsets [Formula: see text] of [Formula: see text] with [Formula: see text], [Formula: see text]. The support of an element [Formula: see text] in a group algebra [Formula: see text] ([Formula: see text] is any field), denoted by [Formula: see text], is the set [Formula: see text]. By the latter result, we prove that if [Formula: see text] for some nonzero [Formula: see text] such that [Formula: see text], then [Formula: see text]. Also, we prove that if [Formula: see text] for some [Formula: see text] such that [Formula: see text], then [Formula: see text]. These results improve a part of results in Schweitzer [J. Group Theory 16(5) (2013) 667–693] and Dykema et al. [Exp. Math. 24 (2015) 326–338] to arbitrary fields, respectively.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3