Δ-Extension of rings and invariance properties of ring extension under group action

Author:

Kumar Rahul1,Gaur Atul1

Affiliation:

1. Department of Mathematics, University of Delhi, Delhi, India

Abstract

Let [Formula: see text] be commutative rings with identity such that [Formula: see text]. A ring extension [Formula: see text] is called a [Formula: see text]-extension of rings if [Formula: see text] is a subring of [Formula: see text] for each pair of subrings [Formula: see text] of [Formula: see text] containing [Formula: see text]. In this paper, a characterization of integrally closed [Formula: see text]-extension of rings is given. The equivalence of [Formula: see text]-extension of rings and [Formula: see text]-extension of rings is established for an integrally closed extension of a local ring. Over a finite dimensional, integrally closed extension of local rings, the equivalence of [Formula: see text]-extensions of rings, FIP, and FCP is shown. Let [Formula: see text] be a subring of [Formula: see text] such that [Formula: see text] is invariant under action by [Formula: see text], where [Formula: see text] is a subgroup of the automorphism group of [Formula: see text]. If [Formula: see text] is a [Formula: see text]-extension of rings, then [Formula: see text] is a [Formula: see text]-extension of rings under some conditions. Many such [Formula: see text]-invariant properties are also discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pairs of rings invariant under group action;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2020-01-13

2. The number of intermediate rings in FIP extension of integral domains;Journal of Algebra and Its Applications;2019-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3