Extension theorems for various weight functions over Frobenius bimodules

Author:

Gluesing-Luerssen Heide1,Pllaha Tefjol1

Affiliation:

1. Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA

Abstract

In this paper, we study codes where the alphabet is a finite Frobenius bimodule over a finite ring. We discuss the extension property for various weight functions. Employing an entirely character-theoretic approach and a duality theory for partitions on Frobenius bimodules, we derive alternative proofs for the facts that the Hamming weight and the homogeneous weight satisfy the extension property. We also use the same techniques to derive the extension property for other weights, such as the Rosenbloom–Tsfasman weight.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MacWilliams Extension Property With Respect to Weighted Poset Metric;IEEE Transactions on Information Theory;2024-02

2. Reflexivity of Partitions Induced by Weighted Poset Metric and Combinatorial Metric;IEEE Transactions on Information Theory;2023-10

3. Minimal Length of Nontrivial Solutions of the Isometry Equation and MacWilliams Extension Property with Respect to Weighted Poset Metric;2022 IEEE International Symposium on Information Theory (ISIT);2022-06-26

4. Some remarks on non projective Frobenius algebras and linear codes;Designs, Codes and Cryptography;2019-07-31

5. Symplectic isometries of stabilizer codes;Journal of Algebra and Its Applications;2019-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3