Clover nil restricted Lie algebras of quasi-linear growth

Author:

Petrogradsky Victor1ORCID

Affiliation:

1. Department of Mathematics, University of Brasilia, 70910-900 Brasilia DF, Brazil

Abstract

The Grigorchuk and Gupta–Sidki groups play a fundamental role in modern group theory. They are natural examples of self-similar finitely generated periodic groups. The author constructed their analogue in case of restricted Lie algebras of characteristic 2 [V. M. Petrogradsky, Examples of self-iterating Lie algebras, J. Algebra 302(2) (2006) 881–886], Shestakov and Zelmanov extended this construction to an arbitrary positive characteristic [I. P. Shestakov and E. Zelmanov, Some examples of nil Lie algebras, J. Eur. Math. Soc. (JEMS) 10(2) (2008) 391–398]. Now, we construct a family of so called clover 3-generated restricted Lie algebras [Formula: see text], where a field of positive characteristic is arbitrary and [Formula: see text] an infinite tuple of positive integers. All these algebras have a nil [Formula: see text]-mapping. We prove that [Formula: see text]. We compute Gelfand–Kirillov dimensions of clover restricted Lie algebras with periodic tuples and show that these dimensions for constant tuples are dense on [Formula: see text]. We construct a subfamily of nil restricted Lie algebras [Formula: see text], with parameters [Formula: see text], [Formula: see text], having extremely slow quasi-linear growth of type: [Formula: see text], as [Formula: see text]. The present research is motivated by construction by Kassabov and Pak of groups of oscillating growth [M. Kassabov and I. Pak, Groups of oscillating intermediate growth. Ann. Math. (2) 177(3) (2013) 1113–1145]. As an analogue, we construct nil restricted Lie algebras of intermediate oscillating growth in [V. Petrogradsky, Nil restricted Lie algebras of oscillating intermediate growth, preprint (2020), arXiv:2004.05157 ]. We call them Phoenix algebras because, for infinitely many periods of time, the algebra is “almost dying” by having a “quasi-linear” growth as above, for infinitely many [Formula: see text] it has a rather fast intermediate growth of type [Formula: see text], for such periods the algebra is “resuscitating”. The present construction of three-generated nil restricted Lie algebras of quasi-linear growth is an important part of that result, responsible for the lower quasi-linear bound in that construction.

Funder

CNPq

FAPDF

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3