Affiliation:
1. Fraunhofer Institute Techno- und Wirtschaftsmathematik, Fraunhoferplatz 1, 67663 Kaiserslautern, Germany
Abstract
A local ring O is called regular if every finitely generated ideal I ◃ O possesses finite projective dimension. In the article localizations O = Aq, q ∈ Spec A, of a finitely presented, flat algebra A over a Prüfer domain R are investigated with respect to regularity: this property of O is shown to be equivalent to the finiteness of the weak homological dimension wdim O. A formula to compute wdim O is provided. Furthermore regular sequences within the maximal ideal M ◃ O are studied: it is shown that regularity of O implies the existence of a maximal regular sequence of length wdim O. If q ∩ R has finite height, then this sequence can be chosen such that the radical of the ideal generated by its members equals M. As a consequence it is proved that if O is regular, then the factor ring O/(q ∩ R)O, which is noetherian, is Cohen–Macaulay. If in addition (q ∩ R)Rq ∩ R is not finitely generated, then O/(q ∩ R)O itself is regular.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Purity and quasi-split torsors over Prüfer bases;Journal de l’École polytechnique — Mathématiques;2024-01-26
2. On the projectivity of proper normal curves over valuation domains;Journal of Algebra and Its Applications;2021-06-17