Comorphic rings

Author:

Alkan M.1,Nicholson W. K.2,Özcan A. Ç.3

Affiliation:

1. Department of Mathematics, Akdeniz University, Antalya 07050, Turkey

2. Department of Mathematics, University of Calgary, Calgary, Canada T2N 1N4, Canada

3. Department of Mathematics, Hacettepe University, Ankara 06800, Turkey

Abstract

A ring [Formula: see text] is called left comorphic if, for each [Formula: see text] there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] Examples include (von Neumann) regular rings, and [Formula: see text] for a prime [Formula: see text] and [Formula: see text] One motivation for studying these rings is that the comorphic rings (left and right) are just the quasi-morphic rings, where [Formula: see text] is left quasi-morphic if, for each [Formula: see text] there exist [Formula: see text] and [Formula: see text] in [Formula: see text] such that [Formula: see text] and [Formula: see text] If [Formula: see text] here the ring is called left morphic. It is shown that [Formula: see text] is left comorphic if and only if, for any finitely generated left ideal [Formula: see text] there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] Using this, we characterize when a left comorphic ring has various properties, and show that if [Formula: see text] is local with nilpotent radical, then [Formula: see text] is left comorphic if and only if it is right comorphic. We also show that a semiprime left comorphic ring [Formula: see text] is semisimple if either [Formula: see text] is left perfect or [Formula: see text] has the ACC on [Formula: see text] After a preliminary study of left comorphic rings with the ACC on [Formula: see text] we show that a quasi-Frobenius ring is left comorphic if and only if every right ideal is principal; if and only if every left ideal is a left principal annihilator. We characterize these rings as follows: The following are equivalent for a ring [Formula: see text] [Formula: see text] is quasi-Frobenius and left comorphic. [Formula: see text] is left comorphic, left perfect and right Kasch. [Formula: see text] is left comorphic, right Kasch, with the ACC on [Formula: see text] [Formula: see text] is left comorphic, left mininjective, with the ACC on [Formula: see text] Some examples of these rings are given.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On morphic modules over commutative rings;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2022-11-13

2. ABELIAN GROUPS WITH LEFT COMORPHIC ENDOMORPHISM RINGS;International Electronic Journal of Algebra;2021-07-17

3. Generalization of 2-absorbing quasi primary ideals;Novi Sad Journal of Mathematics;2021-02-25

4. Left comorphic matrix rings;Linear and Multilinear Algebra;2019-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3