Affiliation:
1. Department of Mathematical Science, Isfahan University of Technology, P. O. Box 84156-83111, Isfahan, Iran
2. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
Abstract
In this paper we continue our study of annihilating-ideal graph of commutative rings, that was introduced in (The annihilating-ideal graph of commutative rings I, to appear in J. Algebra Appl.). Let R be a commutative ring with 𝔸(R) be its set of ideals with nonzero annihilator and Z(R) its set of zero divisors. The annihilating-ideal graph of R is defined as the (undirected) graph 𝔸𝔾(R) that its vertices are 𝔸(R)* = 𝔸(R)\{(0)} in which for every distinct vertices I and J, I — J is an edge if and only if IJ = (0). First, we study the diameter of 𝔸𝔾(R). A complete characterization for the possible diameter is given exclusively in terms of the ideals of R when either R is a Noetherian ring or Z(R) is not an ideal of R. Next, we study coloring of annihilating-ideal graphs. Among other results, we characterize when either χ(𝔸𝔾(R)) ≤ 2 or R is reduced and χ(𝔸𝔾(R)) ≤ ∞. Also it is shown that for each reduced ring R, χ(𝔸𝔾(R)) = cl (𝔸𝔾(R)). Moreover, if χ(𝔸𝔾(R)) is finite, then R has a finite number of minimal primes, and if n is this number, then χ(𝔸𝔾(R)) = cl (𝔸𝔾(R)) = n. Finally, we show that for a Noetherian ring R, cl (𝔸𝔾(R)) is finite if and only if for every ideal I of R with I2 = (0), I has finite number of R-submodules.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献