Algebraic construction of quasi-split algebraic tori

Author:

Jamshidpey Armin1,Lemire Nicole2ORCID,Schost Éric1

Affiliation:

1. David Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

2. Department of Mathematics, University of Western Ontario, London, Canada

Abstract

The main purpose of this work is to give a constructive proof for a particular case of the no-name lemma. Let [Formula: see text] be a finite group, [Formula: see text] a field that is equipped with a faithful [Formula: see text]-action, and [Formula: see text] a sign permutation [Formula: see text]-lattice (see the Introduction for the definition). Then [Formula: see text] acts naturally on the group algebra [Formula: see text] of [Formula: see text] over [Formula: see text], and hence also on the quotient field [Formula: see text]. A well-known variant of the no-name lemma asserts that the invariant sub-field [Formula: see text] is a purely transcendental extension of [Formula: see text]. In other words, there exist [Formula: see text] which are algebraically independent over [Formula: see text] such that [Formula: see text]. In this paper, we give an explicit construction of suitable elements [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Reference16 articles.

1. Graduate Texts in Mathematics;Colliot-Thélène J.-L.,2007

2. Computational Invariant Theory

3. Rationality of fields of invariants

4. Invariants of finite abelian groups

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3