Affiliation:
1. Institute of Mathematics and Informatics, Eszterházy Károly College, H-3300 Eger, Leányka út 4, Hungary
Abstract
Let K be a field of odd characteristic p, and let G be the direct product of a finite p-group P ≠ 1 and a Hamiltonian 2-group. We show that the set of symmetric elements (KG)* of the group algebra KG with respect to the involution of KG which inverts all elements of G, satisfies all Lie commutator identities of degree t(P) or more, where t(P) denotes the nilpotency index of the augmentation ideal of the group algebra KP. In addition, if P is powerful, then (KG)* satisfies no Lie commutator identity of degree less than t(P). Applying this result we get that (KG)* is Lie nilpotent and Lie solvable, and its Lie nilpotency index and Lie derived length are not greater than t(P) and ⌈ log 2 t(P)⌉, respectively, and these bounds are attained whenever P is a powerful group. The corresponding result on the set of symmetric units of KG is also obtained.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory