Cohen–Macaulay binomial edge ideals in terms of blocks with whiskers

Author:

Saha Kamalesh1ORCID,Sengupta Indranath1ORCID

Affiliation:

1. Department of Mathematics, IIT Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India

Abstract

For a graph [Formula: see text] and the binomial edge ideal [Formula: see text] of [Formula: see text], Bolognini et al. have proved the following: [Formula: see text] is strongly unmixed [Formula: see text][Formula: see text] is Cohen–Macaulay [Formula: see text][Formula: see text] is accessible. Moreover, they have conjectured that the converse of these implications is true. Accessible and strongly unmixed properties are purely combinatorial. We give some motivations to focus only on blocks with whiskers for the characterization of all [Formula: see text] with Cohen–Macaulay [Formula: see text]. We show that accessible and strongly unmixed properties of [Formula: see text] depend only on the corresponding properties of its blocks with whiskers and vice versa. We give a new family of graphs whose binomial edge ideals are Cohen–Macaulay, and from that family, we classify all [Formula: see text]-regular [Formula: see text]-connected graphs, with the property that, after attaching some special whiskers to it, the binomial edge ideals become Cohen–Macaulay. To prove the Cohen–Macaulay conjecture, it is enough to show that every non-complete accessible graph [Formula: see text] has a cut vertex [Formula: see text] such that [Formula: see text] is accessible. We show that any non-complete accessible graph [Formula: see text] having at most three cut vertices has a cut vertex [Formula: see text] for which [Formula: see text] is accessible.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cohen-Macaulay property of binomial edge ideals with girth of graphs;Journal of Algebra;2024-11

2. On the Depth of Generalized Binomial Edge Ideals;Mediterranean Journal of Mathematics;2024-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3