Affiliation:
1. Department of Mathematics, Florida Institute of Technology, Melbourne, FL, USA
2. Department of Mathematics and Computer Science, Saint Louis University, St. Louis, MO, USA
Abstract
Let [Formula: see text] be a field and [Formula: see text] a morphism. There is a natural conjugation action on the space of such morphisms by elements of the projective linear group [Formula: see text]. The group of automorphisms, or stabilizer group, of a given [Formula: see text] for this action is known to be a finite group. In this paper, we apply methods of invariant theory to automorphism groups by addressing two mainly computational problems. First, given a finite subgroup of [Formula: see text], determine endomorphisms of [Formula: see text] with that group as a subgroup of its automorphism group. In particular, we show that every finite subgroup occurs infinitely often and discuss some associated rationality problems. Inversely, given an endomorphism, determine its automorphism group. In particular, we extend the Faber–Manes–Viray fixed-point algorithm for [Formula: see text] to endomorphisms of [Formula: see text]. A key component is an explicit bound on the size of the automorphism group depending on the degree of the endomorphism.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献