Enhanced equivariant Saito duality

Author:

Ebeling Wolfgang1,Gusein-Zade Sabir M.2

Affiliation:

1. Leibniz Universität Hannover, Institut für Algebraische Geometrie, Postfach 6009, D-30060 Hannover, Germany

2. Faculty of Mechanics and Mathematics, Moscow State University, Moscow, GSP-1, 119991, Russia

Abstract

In a previous paper, the authors defined an equivariant version of the so-called Saito duality between the monodromy zeta functions as a sort of Fourier transform between the Burnside rings of an abelian group and of its group of characters. Here, a so-called enhanced Burnside ring [Formula: see text] of a finite group [Formula: see text] is defined. An element of it is represented by a finite [Formula: see text]-set with a [Formula: see text]-equivariant transformation and with characters of the isotropy subgroups associated to all points. One gives an enhanced version of the equivariant Saito duality. For a complex analytic [Formula: see text]-manifold with a [Formula: see text]-equivariant transformation of it one has an enhanced equivariant Euler characteristic with values in a completion of [Formula: see text]. It is proved that the (reduced) enhanced equivariant Euler characteristics of the Milnor fibers of Berglund–Hübsch dual invertible polynomials are enhanced dual to each other up to sign. As a byproduct, this implies the result about the orbifold zeta functions of Berglund–Hübsch–Henningson dual pairs obtained earlier.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3