Affiliation:
1. School of Mathematics and Information Sciences, Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, Henan Normal University, Xinxiang Henan 453007, P. R. China
2. Key Laboratory of Applied Mathematics (Putian University), Fujian Province University, Putian Fujian 351100, P. R. China
Abstract
Let [Formula: see text] be an element of a finite group [Formula: see text], and [Formula: see text] a prime factor of the order of [Formula: see text]. It is clear that there always exists a unique minimal subnormal subgroup containing [Formula: see text], say [Formula: see text]. We call the conjugacy class of [Formula: see text] in [Formula: see text] the sub-class of [Formula: see text] in [Formula: see text], see [G. Qian and Y. Yang, On sub-class sizes of finite groups, J. Aust. Math. Soc. (2020) 402–411]. In this paper, assume that [Formula: see text] is the product of the subgroups [Formula: see text] and [Formula: see text], we investigate the solvability, [Formula: see text]-nilpotence and supersolvability of the group [Formula: see text] under the condition that the sub-class sizes of prime power order elements in [Formula: see text] are [Formula: see text] free, [Formula: see text] free and square free, respectively, so that some known results relevant to conjugacy class sizes are generalized.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Algebra and Number Theory