Affiliation:
1. Department of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran
Abstract
We consider the non-commuting graph ∇(G) of a non-abelian finite group G; its vertex set is G\Z(G), the set of non-central elements of G, and two distinct vertices x and y are joined by an edge if [x, y] ≠ 1. We determine the structure of any finite non-abelian group G (up to isomorphism) for which ∇(G) is a complete multipartite graph (see Propositions 3 and 4). It is also shown that a non-commuting graph is a strongly regular graph if and only if it is a complete multipartite graph. Finally, it is proved that there is no non-abelian group whose non-commuting graph is self-complementary and n-cube.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献