Pairs of domains where all intermediate domains satisfy S-ACCP

Author:

Visweswaran S.1ORCID

Affiliation:

1. Department of Mathematics, Saurashtra University, Rajkot 360 005, India

Abstract

The rings considered in this paper are commutative with identity. If [Formula: see text] is a subring of a ring [Formula: see text], then we assume that [Formula: see text] contains the identity element of [Formula: see text]. Let [Formula: see text] be a multiplicatively closed subset (m.c. subset) of a ring [Formula: see text]. An increasing sequence of ideals [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-stationary if there exist [Formula: see text] and [Formula: see text] such that [Formula: see text] for all [Formula: see text]. This paper is motivated by the research work [A. Hamed and H. Kim, On integral domains in which every ascending chain on principal ideals is [Formula: see text]-stationary, Bull. Korean Math. Soc. 57(5) (2020) 1215–1229]. Let [Formula: see text] be a m.c. subset of an integral domain [Formula: see text]. We say that [Formula: see text] satisfies [Formula: see text]-ACCP if every increasing sequence of principal ideals of [Formula: see text] is [Formula: see text]-stationary. Let [Formula: see text] be a subring of an integral domain [Formula: see text] and let [Formula: see text] be a m.c. subset of [Formula: see text]. We say that [Formula: see text] is an [Formula: see text]-ACCP pair if [Formula: see text] satisfies [Formula: see text]-ACCP for every subring [Formula: see text] of [Formula: see text] with [Formula: see text]. The aim of this paper is to provide some pairs of domains [Formula: see text] such that [Formula: see text] is an [Formula: see text]-ACCP pair, where [Formula: see text] is a m.c. subset of [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When is (D, K) an S-accr pair?;Arab Journal of Mathematical Sciences;2021-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3