Affiliation:
1. Department of Mathematics, Ben Gurion University, Beer Sheva, 84105, Israel
Abstract
Given two unital associative rings R ⊆ S, the ring S is said to be an ideal (or Dorroh) extension of R if S = R ⊕ I, for some ideal I ⊆ S. In this note, we investigate the ideal structure of an arbitrary ideal extension of an arbitrary ring R. In particular, we describe the Jacobson and upper nil radicals of such a ring, in terms of the Jacobson and upper nil radicals of R, and we determine when such a ring is prime and when it is semiprime. We also classify all the prime and maximal ideals of an ideal extension S of R, under certain assumptions on the ideal I. These are generalizations of earlier results in the literature.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献