Certain towers of ramified minimal ring extensions of commutative rings, II

Author:

Dobbs David E.1ORCID

Affiliation:

1. Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1320, USA

Abstract

Let [Formula: see text] be an odd prime number and [Formula: see text]. Assume that either [Formula: see text]i[Formula: see text] [Formula: see text] or [Formula: see text]ii[Formula: see text] [Formula: see text] and [Formula: see text] is congruent to either [Formula: see text] or [Formula: see text] modulo [Formula: see text] [Formula: see text]respectively, assume that [Formula: see text] and [Formula: see text] is congruent to either [Formula: see text] or [Formula: see text] modulo [Formula: see text]. Then there exist exactly five [Formula: see text]respectively, exactly seven[Formula: see text] isomorphism classes of rings [Formula: see text] for which there exists a tower [Formula: see text] of ramified [Formula: see text]integral minimal[Formula: see text] ring extensions such that [Formula: see text] is the only ring properly contained between [Formula: see text] and [Formula: see text]. We produce a set of isomorphism class representatives of such [Formula: see text] and, for each such [Formula: see text], we show that, up to isomorphism, the corresponding ring [Formula: see text] is the idealization [Formula: see text]. One consequence, for each integer [Formula: see text] whose prime-power factorization [Formula: see text] (with pairwise distinct prime numbers [Formula: see text] and positive integers [Formula: see text]) satisfies [Formula: see text] for all [Formula: see text], is a classification, up to isomorphism, of the rings that have cardinality [Formula: see text] and exactly two proper (unital) subrings.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3