PRESENTATIONS AND MODULE BASES OF INTEGER-VALUED POLYNOMIAL RINGS

Author:

ELLIOTT JESSE1

Affiliation:

1. Department of Mathematics, California State University, Channel Islands, Camarillo, California 93012, USA

Abstract

Let D be an integral domain with quotient field K. For any set X, the ring Int (DX) of integer-valued polynomials onDX is the set of all polynomials f ∈ K[X] such that f(DX) ⊆ D. Using the t-closure operation on fractional ideals, we find for any set X a D-algebra presentation of Int (DX) by generators and relations for a large class of domains D, including any unique factorization domain D, and more generally any Krull domain D such that Int (D) has a regular basis, that is, a D-module basis consisting of exactly one polynomial of each degree. As a corollary we find for all such domains D an intrinsic characterization of the D-algebras that are isomorphic to a quotient of Int (DX) for some set X. We also generalize the well-known result that a Krull domain D has a regular basis if and only if the Pólya–Ostrowski group of D (that is, the subgroup of the class group of D generated by the images of the factorial ideals of D) is trivial, if and only if the product of the height one prime ideals of finite norm q is principal for every q.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Reference16 articles.

1. Polynomial Closure

2. Mathematical Surveys and Monographs;Cahen P.-J.,1997

3. Integer valued polynomials and Lubin–Tate formal groups

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Flatness in Integer-Valued Polynomial Rings;Algebraic, Number Theoretic, and Topological Aspects of Ring Theory;2023

2. SOME RESULTS ON INTEGER-VALUED POLYNOMIALS OVER MODULES;B KOREAN MATH SOC;2020

3. When Is $$\mathrm {Int}(E,D)$$ Int ( E , D ) a Locally Free D–Module;Homological and Combinatorial Methods in Algebra;2018

4. Idempotent plethories;Journal of Algebra;2016-10

5. The Probability That Int n (D) Is Free;Commutative Algebra;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3