Some remarks on graded nilpotent Lie algebras and the Toral Rank Conjecture

Author:

Ames Guillermo1,Cagliero Leandro2,Cruz Mónica3

Affiliation:

1. Universidad Tecnológica Nacional, Facultad Regional Córdoba, Córdoba, Argentina

2. CIEM-CONICET, FAMAF-Universidad Nacional de Córdoba, Córdoba, Argentina

3. Facultad de Ciencias Exactas, Universidad Nacional de Salta, Salta, Argentina

Abstract

If 𝔫 is a [Formula: see text]-graded nilpotent finite-dimensional Lie algebra over a field of characteristic zero, a well-known result of Deninger and Singhof states that dim H*(𝔫) ≥ L(p) where p is the polynomial associated to the grading and L(p) is the sum of the absolute values of the coefficients of p. From this result they derived the Toral Rank Conjecture (TRC) for 2-step nilpotent Lie algebras. An algebraic version of the TRC states that dim H*(𝔫) ≥ 2 dim (ℨ) for any finite-dimensional nilpotent Lie algebra 𝔫 with center ℨ. The TRC is more than 25 years old and remains open even for [Formula: see text]-graded 3-step nilpotent Lie algebras. Investigating to what extent the bound given by Deninger and Singhof could help to prove the TRC in this case, we considered the following two questions regarding a nilpotent Lie algebra 𝔫 with center ℨ: (A) If 𝔫 admits a [Formula: see text]-grading [Formula: see text], such that its associated polynomial p satisfies L(p) > 2 dim ℨ, does 𝔫 admit a ℤ+-grading [Formula: see text] such that its associated polynomial p′ satisfies L(p′) > 2 dim ℨ? (B) If 𝔫 is r-step nilpotent admitting a grading 𝔫 = 𝔫1 ⊕ 𝔫2 ⊕ ⋯ ⊕ 𝔫k such that its associated polynomial p satisfies L(p) > 2 dim ℨ, does 𝔫 admit a grading [Formula: see text] such that its associated polynomial p′ satisfies L(p′) > 2 dim ℨ? In this paper we show that the answer to (A) is yes, but the answer to (B) is no.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3