GOING-DOWN AND SEMISTAR OPERATIONS

Author:

DOBBS DAVID E.1,SAHANDI PARVIZ23

Affiliation:

1. Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, USA

2. Department of Mathematics, University of Tehran, Tehran, Iran

3. Institute for Studies in Theoretical Physics, and Mathematics (IPM), Tehran, Iran

Abstract

If D ⊆ T is an extension of (commutative integral) domains and ⋆ (resp., ⋆′) is a semistar operation on D (resp., T), we define what it means for D ⊆ T to satisfy the (⋆,⋆′)-GD property. Sufficient conditions are given for (⋆,⋆′)-GD, generalizing classical sufficient conditions for GD such as flatness, openness of the contraction map of spectra and the hypotheses of the classical going-down theorem. If ⋆ is a semistar operation on a domain D, we define what it means for D to be a ⋆-GD domain, generalizing the notion of a going-down domain. In determining whether a domain D is a [Formula: see text] domain, the domain extensions T of D for which [Formula: see text] is tested can be the [Formula: see text]-valuation overrings of D, the simple overrings of D, or all T. P ⋆ MD s are characterized as the [Formula: see text]-treed (resp., [Formula: see text]) domains D which are [Formula: see text]-finite conductor domains such that [Formula: see text] is integrally closed. Several characterizations are given of the [Formula: see text]-Noetherian domains D of [Formula: see text]-dimension 1 in terms of the behavior of the (⋆,⋆′)-linked overrings of D and the ⋆-Nagata rings Na(D,⋆).

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A NOTE ON w-GD DOMAINS;B KOREAN MATH SOC;2020

2. ON LCM-STABLE MODULES;Journal of Algebra and Its Applications;2014-01-09

3. Universally Catenarian Integral Domains, Strong S-Domains and Semistar Operations;Communications in Algebra;2010-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3