Reflexive ideals and reflexively closed subsets in rings

Author:

Kim Sera1,Kwak Tai Keun2,Lee Chang Ik3,Lee Yang24,Yun Sang Jo5

Affiliation:

1. Department of Natural Science, Republic of Korea Naval Academy, Changwon 57104, Korea

2. Department of Mathematics, Daejin University, Pocheon 11159, Korea

3. Department of Mathematics, Pusan National University, Busan 46241, Korea

4. Department of Mathematics, Yanbian University, Yanji 133002, P. R. China

5. Department of Mathematics, Dong-A University, Busan, 49315, Korea

Abstract

We continue the study of the reflexivity of ideals, introduced by Mason, and extend this notion to the subsets in rings. We first construct the smallest reflexive ideal containing [Formula: see text] from any proper ideal [Formula: see text] of any given ring [Formula: see text]; by which we can construct reflexive ideals but not semiprime in a kind of noncommutative ring. A subset [Formula: see text] of a ring [Formula: see text] is called reflexively closed if [Formula: see text] for [Formula: see text] implies [Formula: see text], checking that a ring [Formula: see text] is symmetric if and only if the right (left) annihilator of [Formula: see text] is reflexively closed for any [Formula: see text]. We prove that the set of all nilpotent elements in a ring [Formula: see text] is reflexively closed if and only if [Formula: see text] is nil for any nilpotent element [Formula: see text] in [Formula: see text]; and that the Köthe’s conjecture holds if and only if the union (sum) of the upper nilradical and any nil right ideal is reflexively closed. We provide another process to show that the set of all nilpotent elements of the polynomial ring over an NI ring need not be reflexively closed.

Funder

National Research Foundation of Korea

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3