Special properties of differential inverse power series rings

Author:

Paykan K.1,Moussavi A.1

Affiliation:

1. Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box 14115-134, Tehran, Iran

Abstract

In this paper, we continue to study the differential inverse power series ring [Formula: see text], where [Formula: see text] is a ring equipped with a derivation [Formula: see text]. We characterize when [Formula: see text] is a local, semilocal, semiperfect, semiregular, left quasi-duo, (uniquely) clean, exchange, right stable range one, abelian, projective-free, [Formula: see text]-ring, respectively. Furthermore, we prove that [Formula: see text] is a domain satisfying the [Formula: see text] on principal left ideals if and only if so does [Formula: see text]. Also, for a piecewise prime ring (PWP) [Formula: see text] we determine a large class of the differential inverse power series ring [Formula: see text] which have a generalized triangular matrix representation for which the diagonal rings are prime. In particular, it is proved that, under suitable conditions, if [Formula: see text] has a (flat) projective socle, then so does [Formula: see text]. Our results extend and unify many existing results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. $$\mathfrak {cP}$$-Baer Polynomial Extensions;Bulletin of the Iranian Mathematical Society;2024-07-01

2. Piecewise prime property of skew inverse Laurent series rings and related rings;Journal of Algebra and Its Applications;2024-06-26

3. Skew π-Baer polynomial rings;Asian-European Journal of Mathematics;2024-02

4. An alternative perspective on Jacobson radical of skew inverse Laurent series rings;Journal of Algebra and Its Applications;2023-11-01

5. Morita contexts and the projective socle property;International Journal of Algebra and Computation;2022-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3