Si AND SiGe BIPOLAR ICs FOR 10 TO 40 Gb/s OPTICAL-FIBER TDM LINKS

Author:

REIN H.-M.1

Affiliation:

1. AG Halbleiterbauelemente, Ruhr-University Bochum, D-44780 Bochum, Germany

Abstract

This paper gives an overview on very-high-speed ICs for optical-fiber systems with restriction to Si-based technologies. As a main aim, the circuit and system designer shall get an impression what operating speeds have already been achieved and, moreover, get a feeling for potential limitations. It is shown that all ICs in 10 Gb/s TDM systems can be fabricated in Si-bipolar production technologies, while for the speed-critical ICs in 20 Gb/s systems, present SiGe laboratory technologies are required if the circuit specifications, apart from the data rate, must remain unchanged. With uncritical circuits like time-division multiplexer (MUX) and demultiplexer (DEMUX), record data rates of 60 Gb/s systems were achieved with a SiGe laboratory technology, using an adequate mounting and measuring technique. Recent measuring results even showed that all ICs in a 40 Gb/s TDM system (i.e., also the speed-critical ones) can be realized in advanced SiGe technologies. However, compared to ICs in 10 and 20 Gb/s systems, some circuit specifications must be relaxed. This is possible by the use of optical amplifiers and improved opto-electronic components as well as by system modifications, which further make possible the elimination of some of the speed-critical circuits. It should be noted that all the experimental results presented are measured on mounted chips, using conventional wire bonding, and that most of the circuits have been used in experimental TDM links.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IC Technologies for Future Lightwave Communication Systems;High-Speed Photonic Devices;2006-09-29

2. Substrate coupling in a high-gain 30-Gb/s SiGe amplifier-modeling, suppression, and measurement;IEEE Journal of Solid-State Circuits;2005-10

3. 40 Gb/s TDM SYSTEM TRANSCEIVER PROTOTYPE IN InP HBT TECHNOLOGY;International Journal of High Speed Electronics and Systems;2005-09

4. Junction Diodes and Bipolar Junction Transistors;The Electrical Engineering Handbook;2005

5. Photodioden und optische Empfänger;Optische Nachrichtentechnik;2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3