PLASMONIC-BASED DEVICES FOR OPTICAL COMMUNICATIONS

Author:

MYNBAEV DJAFAR K.1,SUKHARENKO VITALY1

Affiliation:

1. New York City College of Technology of the City University of New York, USA

Abstract

To meet the demand of delivering ever-increasing Internet traffic, optical network must response by increasing its transmission capacity. Since transmission capacity of an individual fiber is still well exceed the capacity of transmitters (TXs) and receivers (RXs), wavelength-division multiplexing (WDM), in which many TXs and RXs at the transmitting ends of a fiber are used to send and receive many signals, becomes the necessary technology for increasing the transmission capacity of each link of an optical network. This trend, however, demands for increasing density not only the TXs and RXs, but all other components at the sending and receiving ends of communications links. As the number of wavelengths in WDM configuration getting greater, the number of all these components that must be placed on one board has to increase too; hence, the density of packaging comes to micro- and even nano-scale. The TXs and RXs are produced in arrays on a chip quite similar to production of VLSI electronic circuits. At that scale, traditional optical operations used today in an optical-communications technology, such as launching light into optical fiber from TXs and directing light from optical fiber into RXs, multiplexing and demultiplexing individual channels (wavelengths), and electro-optical (E/O) and opto-electrical (O/E) conversions become problems primarily because of the diffraction limit. The problems associated with the diffraction limit are particularly acute for optical interconnects. One of the possible solutions to all these—and some other—problems could be the use of plasmonics. In the last years, the optical-communications industry shows a great interest in developing this topic, as the growing number of publications and practical results can attest. This paper consists of two parts. The first part reviews the current trends in application of plasmonics in optical communications and the second part discusses the theoretical foundation of the proposed WDM demultiplexer and offers the scheme of possible implementation of the device.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3