Affiliation:
1. Department of Physics, Applied Physics & Astronomy, and Department of Electrical, Computer & System Engineering, Rensselaer Polytechnic Institute, Troy NY 12180, USA
Abstract
Terahertz (THz) radiation occupies part of the electromagnetic spectrum between the infrared and microwave bands. Until recently, technology at THz frequencies was under-developed compared to the rest of the electromagnetic spectrum, leaving a gap between millimeter waves and the far-infrared (FIR). In the past decade, interest in the THz gap has been increased by the development of ultrafast laser-based T-ray systems and their demonstration of diffraction-limited spatial resolution, picosecond temporal resolution, DC-THz spectral bandwidth and signal-to-noise ratios above 104. This chapter reviews the development, the state of the art and the applications of T-ray spectrometers. Continuous-wave (CW) THz-frequency sources and detectors are briefly introduced in comparison to ultrafast pulsed THz systems. An emphasis is placed on experimental applications of T-rays to sensing and imaging, with a view to the continuing advance of technologies and applications in the THz band.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献