Continuous-Wave Terahertz Spectroscopy of Plasmas and Biomolecules

Author:

Plusquellic D. F.1,Korter T. M.1,Fraser G. T.1,Lavrich R. J.1,Benck E. C.1,Bucher C. R.1,Walker A. R. Hight1,Domenech J. L.1

Affiliation:

1. Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8441, USA

Abstract

Continuous-wave linear-absorption spectroscopy based on THz radiation generated by solid-state photomixers has been applied to the investigation of the dynamics of biomolecules in polyethylene matrices and to line shape studies of HF for diagnostics of semiconductor etching plasmas. The THz spectra of biotin and myoglobin have been obtained using a variable-temperature, cryogenic sampling system. The spectrum of biotin displays a small number of discrete absorptions over the temperature range from 4.2 K to room temperature while the spectrum of myoglobin has no obvious resonance structure at the >10% fractional absorption level. Spectral predictions from the lowest energy ab initio conformations of biotin are in poor agreement with experiment, suggesting the need to include condensed-phase environmental interactions for qualitative predictions of the THz spectrum. Vibrational anharmonicity is used to model the line shapes that result from drastic changes in vibrational sequence level populations of biotin over this temperature range. Anharmonicity factors (χeωee) at the levels of 0.1% to 0.8% are obtained from non-linear least squares fits of the observed resonances and illustrate their important for refining model predictions. Application of the photomixer system to line shape studies in etching plasmas has been used to study the formation efficiency and translational temperature of HF at 1.2 THz under different operating conditions. These results will aid in understanding the chemistry of industry-standard fluorocarbon and oxygenated fluorocarbon etching plasmas.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3