Affiliation:
1. Institute for Microelectronics, TU Vienna, Gusshausstrasse 27–29, A-1040 Vienna, Austria
Abstract
A theoretical analysis of the Monte Carlo (MC) method for both semiclassical and quantum device simulation is presented. A link between physically-based MC methods for semiclassical transport calculations and the numerical MC method for solving integrals and integral equations is established. The integral representations of the transient and the stationary Boltzmann equations are presented as well as the respective conjugate equations. The structure of the terms of the Neumann series and their evaluation by MC integration is discussed. Using this formal approach the standard MC algorithms and a variety of new algorithms is derived, such as the backward and the weighted algorithms, and algorithms for linear small-signal analysis. Applying this theoretical framework to the Wigner-Boltzmann equation enables the development of particle models for quantum transport problems.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献