Image and Video Compression: A Review

Author:

Podilchuk Christine I.1,Safranek Robert J.1

Affiliation:

1. AT&T Bell Laboratories, Signal Processing Research Department, Murray Hill, NJ 07974, USA

Abstract

The area of image and video compression has made tremendous progress over the last several decades. The successes in image compression are due to advances and better understanding of waveform coding methods which take advantage of the signal statistics, perceptual methods which take advantage of psychovisual properties of the human visual system (HVS) and object-based models especially for very low bit rate work. Recent years have produced several image coding standards—JPEG for still image compression and H.261, MPEG-I and MPEG-II for video compression. While we have devoted a special section in this paper to cover international coding standards because of their practical value, we have also covered a large class of nonstandard coding technology in the interest of completeness and potential future value. Very low bit rate video coding remains a challenging problem as does our understanding of the human visual system for perceptually optimum compression. The wide range of applications and bit rates, from video telephony at rates as low as 9.6 kbps to HDTV at 20 Mbps and higher, has acted as a catalyst for generating new ideas in tackling the different challenges characterized by the particular application. The area of image compression will remain an interesting and fruitful area of research as we focus on combining source coding with channel coding and multimedia networking.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient parallel algorithm for hexagonal-based fractal image compression;International Journal of Computer Mathematics;2007-02

2. Embedded optical flow motion compensation and finite state hierarchical vector quantization;1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258);1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3