EX SITU ATOMIC FORCE MICROSCOPY STUDIES OF SURFACE MORPHOLOGY ON {001} FACES OF MMTWD CRYSTALS

Author:

LIU X. J.1,WANG X. Q.1,WANG Z. Y.1,XU D.1,YU G. W.1,SONG Y. Y.1,GENG Y. L.1,ZHANG H. B.1

Affiliation:

1. State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Ji'nan 250100, P. R. China

Abstract

Surface morphology of the {001} faces of MMTWD crystals grown from by the temperature-lowering method has been studied. Monolayer and multilayer steps elongate along the a direction, which is determined by the crystal structure. Apart from that, the elementary steps have narrower terraces than the bunched ones, which may be resulting from the faster growth rates of the former than the latter. The formation of the protuberances at the step fronts is primarily associated with the uneven growth rates. The hollow cavities also elongate along the a direction, which demonstrates that the formation of them is also restricted by the crystal structure. Cracks are supposed to occur during harvesting, handling, or temperature stress afterwards. Growth of the 3D hillocks in high density can probably cause large stress and induce structure mismatch and serious cracks at the later stage.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3